3.11.3 \(\int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx\) [1003]

3.11.3.1 Optimal result
3.11.3.2 Mathematica [A] (warning: unable to verify)
3.11.3.3 Rubi [A] (verified)
3.11.3.4 Maple [A] (verified)
3.11.3.5 Fricas [A] (verification not implemented)
3.11.3.6 Sympy [F]
3.11.3.7 Maxima [A] (verification not implemented)
3.11.3.8 Giac [A] (verification not implemented)
3.11.3.9 Mupad [B] (verification not implemented)

3.11.3.1 Optimal result

Integrand size = 28, antiderivative size = 104 \[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=-\frac {1}{8} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} \sqrt {x}-\frac {1}{12} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2}+\frac {1}{3} \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{5/2}-\frac {\text {arccosh}\left (\sqrt {x}\right )}{8} \]

output
-1/8*arccosh(x^(1/2))-1/12*x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)+1/ 
3*x^(5/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2)-1/8*x^(1/2)*(-1+x^(1/2))^(1 
/2)*(1+x^(1/2))^(1/2)
 
3.11.3.2 Mathematica [A] (warning: unable to verify)

Time = 1.37 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.84 \[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=\frac {1}{24} \left (\sqrt {\frac {-1+\sqrt {x}}{1+\sqrt {x}}} \sqrt {x} \left (-3-3 \sqrt {x}-2 x-2 x^{3/2}+8 x^2+8 x^{5/2}\right )-6 \text {arctanh}\left (\sqrt {\frac {-1+\sqrt {x}}{1+\sqrt {x}}}\right )\right ) \]

input
Integrate[Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2),x]
 
output
(Sqrt[(-1 + Sqrt[x])/(1 + Sqrt[x])]*Sqrt[x]*(-3 - 3*Sqrt[x] - 2*x - 2*x^(3 
/2) + 8*x^2 + 8*x^(5/2)) - 6*ArcTanh[Sqrt[(-1 + Sqrt[x])/(1 + Sqrt[x])]])/ 
24
 
3.11.3.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {812, 845, 845, 852, 43}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2} \, dx\)

\(\Big \downarrow \) 812

\(\displaystyle \frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}-\frac {1}{6} \int \frac {x^{3/2}}{\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}dx\)

\(\Big \downarrow \) 845

\(\displaystyle \frac {1}{6} \left (-\frac {3}{4} \int \frac {\sqrt {x}}{\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}dx-\frac {1}{2} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}\right )+\frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}\)

\(\Big \downarrow \) 845

\(\displaystyle \frac {1}{6} \left (-\frac {3}{4} \left (\frac {1}{2} \int \frac {1}{\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}}dx+\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}\right )-\frac {1}{2} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}\right )+\frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}\)

\(\Big \downarrow \) 852

\(\displaystyle \frac {1}{6} \left (-\frac {3}{4} \left (\int \frac {1}{\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1}}d\sqrt {x}+\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}\right )-\frac {1}{2} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}\right )+\frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}\)

\(\Big \downarrow \) 43

\(\displaystyle \frac {1}{6} \left (-\frac {3}{4} \left (\text {arccosh}\left (\sqrt {x}\right )+\sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} \sqrt {x}\right )-\frac {1}{2} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{3/2}\right )+\frac {1}{3} \sqrt {\sqrt {x}-1} \sqrt {\sqrt {x}+1} x^{5/2}\)

input
Int[Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(3/2),x]
 
output
(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*x^(5/2))/3 + (-1/2*(Sqrt[-1 + Sqrt[x 
]]*Sqrt[1 + Sqrt[x]]*x^(3/2)) - (3*(Sqrt[-1 + Sqrt[x]]*Sqrt[1 + Sqrt[x]]*S 
qrt[x] + ArcCosh[Sqrt[x]]))/4)/6
 

3.11.3.3.1 Defintions of rubi rules used

rule 43
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
ArcCosh[b*(x/a)]/(b*Sqrt[d/b]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a 
*d, 0] && GtQ[a, 0] && GtQ[d/b, 0]
 

rule 812
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_) 
^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*(a1 + b1*x^n)^p*((a2 + b2*x^n) 
^p/(c*(m + 2*n*p + 1))), x] + Simp[2*a1*a2*n*(p/(m + 2*n*p + 1))   Int[(c*x 
)^m*(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a 
2, b2, c, m}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[p, 0] && N 
eQ[m + 2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]
 

rule 845
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^ 
(n_))^(p_), x_Symbol] :> Simp[c^(2*n - 1)*(c*x)^(m - 2*n + 1)*(a1 + b1*x^n) 
^(p + 1)*((a2 + b2*x^n)^(p + 1)/(b1*b2*(m + 2*n*p + 1))), x] - Simp[a1*a2*c 
^(2*n)*((m - 2*n + 1)/(b1*b2*(m + 2*n*p + 1)))   Int[(c*x)^(m - 2*n)*(a1 + 
b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && Eq 
Q[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n*p + 1 
, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]
 

rule 852
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^ 
(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/c   Subst[Int[x^ 
(k*(m + 1) - 1)*(a1 + b1*(x^(k*n)/c^n))^p*(a2 + b2*(x^(k*n)/c^n))^p, x], x, 
 (c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2 
, 0] && IGtQ[2*n, 0] && FractionQ[m] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, 
m, p, x]
 
3.11.3.4 Maple [A] (verified)

Time = 4.60 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.62

method result size
derivativedivides \(-\frac {\sqrt {\sqrt {x}-1}\, \sqrt {\sqrt {x}+1}\, \left (-8 x^{\frac {5}{2}} \sqrt {-1+x}+2 x^{\frac {3}{2}} \sqrt {-1+x}+3 \sqrt {x}\, \sqrt {-1+x}+3 \ln \left (\sqrt {x}+\sqrt {-1+x}\right )\right )}{24 \sqrt {-1+x}}\) \(65\)
default \(-\frac {\sqrt {\sqrt {x}-1}\, \sqrt {\sqrt {x}+1}\, \left (-8 x^{\frac {5}{2}} \sqrt {-1+x}+2 x^{\frac {3}{2}} \sqrt {-1+x}+3 \sqrt {x}\, \sqrt {-1+x}+3 \ln \left (\sqrt {x}+\sqrt {-1+x}\right )\right )}{24 \sqrt {-1+x}}\) \(65\)

input
int(x^(3/2)*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/24*(x^(1/2)-1)^(1/2)*(x^(1/2)+1)^(1/2)*(-8*x^(5/2)*(-1+x)^(1/2)+2*x^(3/ 
2)*(-1+x)^(1/2)+3*x^(1/2)*(-1+x)^(1/2)+3*ln(x^(1/2)+(-1+x)^(1/2)))/(-1+x)^ 
(1/2)
 
3.11.3.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.55 \[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=\frac {1}{24} \, {\left (8 \, x^{2} - 2 \, x - 3\right )} \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + \frac {1}{16} \, \log \left (2 \, \sqrt {x} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} - 2 \, x + 1\right ) \]

input
integrate(x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2),x, algorithm="frica 
s")
 
output
1/24*(8*x^2 - 2*x - 3)*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 1/16* 
log(2*sqrt(x)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) - 2*x + 1)
 
3.11.3.6 Sympy [F]

\[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=\int x^{\frac {3}{2}} \sqrt {\sqrt {x} - 1} \sqrt {\sqrt {x} + 1}\, dx \]

input
integrate(x**(3/2)*(-1+x**(1/2))**(1/2)*(1+x**(1/2))**(1/2),x)
 
output
Integral(x**(3/2)*sqrt(sqrt(x) - 1)*sqrt(sqrt(x) + 1), x)
 
3.11.3.7 Maxima [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.45 \[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=\frac {1}{3} \, {\left (x - 1\right )}^{\frac {3}{2}} x^{\frac {3}{2}} + \frac {1}{4} \, {\left (x - 1\right )}^{\frac {3}{2}} \sqrt {x} + \frac {1}{8} \, \sqrt {x - 1} \sqrt {x} - \frac {1}{8} \, \log \left (2 \, \sqrt {x - 1} + 2 \, \sqrt {x}\right ) \]

input
integrate(x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2),x, algorithm="maxim 
a")
 
output
1/3*(x - 1)^(3/2)*x^(3/2) + 1/4*(x - 1)^(3/2)*sqrt(x) + 1/8*sqrt(x - 1)*sq 
rt(x) - 1/8*log(2*sqrt(x - 1) + 2*sqrt(x))
 
3.11.3.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.22 \[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=\frac {1}{120} \, {\left ({\left (2 \, {\left ({\left (4 \, {\left (5 \, \sqrt {x} - 26\right )} {\left (\sqrt {x} + 1\right )} + 321\right )} {\left (\sqrt {x} + 1\right )} - 451\right )} {\left (\sqrt {x} + 1\right )} + 745\right )} {\left (\sqrt {x} + 1\right )} - 405\right )} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + \frac {1}{60} \, {\left ({\left (2 \, {\left (3 \, {\left (4 \, \sqrt {x} - 17\right )} {\left (\sqrt {x} + 1\right )} + 133\right )} {\left (\sqrt {x} + 1\right )} - 295\right )} {\left (\sqrt {x} + 1\right )} + 195\right )} \sqrt {\sqrt {x} + 1} \sqrt {\sqrt {x} - 1} + \frac {1}{4} \, \log \left (\sqrt {\sqrt {x} + 1} - \sqrt {\sqrt {x} - 1}\right ) \]

input
integrate(x^(3/2)*(-1+x^(1/2))^(1/2)*(1+x^(1/2))^(1/2),x, algorithm="giac" 
)
 
output
1/120*((2*((4*(5*sqrt(x) - 26)*(sqrt(x) + 1) + 321)*(sqrt(x) + 1) - 451)*( 
sqrt(x) + 1) + 745)*(sqrt(x) + 1) - 405)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 
1) + 1/60*((2*(3*(4*sqrt(x) - 17)*(sqrt(x) + 1) + 133)*(sqrt(x) + 1) - 295 
)*(sqrt(x) + 1) + 195)*sqrt(sqrt(x) + 1)*sqrt(sqrt(x) - 1) + 1/4*log(sqrt( 
sqrt(x) + 1) - sqrt(sqrt(x) - 1))
 
3.11.3.9 Mupad [B] (verification not implemented)

Time = 45.13 (sec) , antiderivative size = 632, normalized size of antiderivative = 6.08 \[ \int \sqrt {-1+\sqrt {x}} \sqrt {1+\sqrt {x}} x^{3/2} \, dx=-\frac {\mathrm {atanh}\left (\frac {\sqrt {\sqrt {x}-1}-\mathrm {i}}{\sqrt {\sqrt {x}+1}-1}\right )}{2}-\frac {\frac {35\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^3}{6\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^3}+\frac {757\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^5}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^5}+\frac {7339\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^7}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^7}+\frac {41929\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^9}{3\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^9}+\frac {25661\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{11}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{11}}+\frac {25661\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{13}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{13}}+\frac {41929\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{15}}{3\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{15}}+\frac {7339\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{17}}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{17}}+\frac {757\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{19}}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{19}}+\frac {35\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{21}}{6\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{21}}-\frac {{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{23}}{2\,{\left (\sqrt {\sqrt {x}+1}-1\right )}^{23}}-\frac {\sqrt {\sqrt {x}-1}-\mathrm {i}}{2\,\left (\sqrt {\sqrt {x}+1}-1\right )}}{1+\frac {66\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^4}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^4}-\frac {220\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^6}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^6}+\frac {495\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^8}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^8}-\frac {792\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{10}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{10}}+\frac {924\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{12}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{12}}-\frac {792\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{14}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{14}}+\frac {495\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{16}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{16}}-\frac {220\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{18}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{18}}+\frac {66\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{20}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{20}}-\frac {12\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{22}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{22}}+\frac {{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^{24}}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^{24}}-\frac {12\,{\left (\sqrt {\sqrt {x}-1}-\mathrm {i}\right )}^2}{{\left (\sqrt {\sqrt {x}+1}-1\right )}^2}} \]

input
int(x^(3/2)*(x^(1/2) - 1)^(1/2)*(x^(1/2) + 1)^(1/2),x)
 
output
- atanh(((x^(1/2) - 1)^(1/2) - 1i)/((x^(1/2) + 1)^(1/2) - 1))/2 - ((35*((x 
^(1/2) - 1)^(1/2) - 1i)^3)/(6*((x^(1/2) + 1)^(1/2) - 1)^3) + (757*((x^(1/2 
) - 1)^(1/2) - 1i)^5)/(2*((x^(1/2) + 1)^(1/2) - 1)^5) + (7339*((x^(1/2) - 
1)^(1/2) - 1i)^7)/(2*((x^(1/2) + 1)^(1/2) - 1)^7) + (41929*((x^(1/2) - 1)^ 
(1/2) - 1i)^9)/(3*((x^(1/2) + 1)^(1/2) - 1)^9) + (25661*((x^(1/2) - 1)^(1/ 
2) - 1i)^11)/((x^(1/2) + 1)^(1/2) - 1)^11 + (25661*((x^(1/2) - 1)^(1/2) - 
1i)^13)/((x^(1/2) + 1)^(1/2) - 1)^13 + (41929*((x^(1/2) - 1)^(1/2) - 1i)^1 
5)/(3*((x^(1/2) + 1)^(1/2) - 1)^15) + (7339*((x^(1/2) - 1)^(1/2) - 1i)^17) 
/(2*((x^(1/2) + 1)^(1/2) - 1)^17) + (757*((x^(1/2) - 1)^(1/2) - 1i)^19)/(2 
*((x^(1/2) + 1)^(1/2) - 1)^19) + (35*((x^(1/2) - 1)^(1/2) - 1i)^21)/(6*((x 
^(1/2) + 1)^(1/2) - 1)^21) - ((x^(1/2) - 1)^(1/2) - 1i)^23/(2*((x^(1/2) + 
1)^(1/2) - 1)^23) - ((x^(1/2) - 1)^(1/2) - 1i)/(2*((x^(1/2) + 1)^(1/2) - 1 
)))/((66*((x^(1/2) - 1)^(1/2) - 1i)^4)/((x^(1/2) + 1)^(1/2) - 1)^4 - (12*( 
(x^(1/2) - 1)^(1/2) - 1i)^2)/((x^(1/2) + 1)^(1/2) - 1)^2 - (220*((x^(1/2) 
- 1)^(1/2) - 1i)^6)/((x^(1/2) + 1)^(1/2) - 1)^6 + (495*((x^(1/2) - 1)^(1/2 
) - 1i)^8)/((x^(1/2) + 1)^(1/2) - 1)^8 - (792*((x^(1/2) - 1)^(1/2) - 1i)^1 
0)/((x^(1/2) + 1)^(1/2) - 1)^10 + (924*((x^(1/2) - 1)^(1/2) - 1i)^12)/((x^ 
(1/2) + 1)^(1/2) - 1)^12 - (792*((x^(1/2) - 1)^(1/2) - 1i)^14)/((x^(1/2) + 
 1)^(1/2) - 1)^14 + (495*((x^(1/2) - 1)^(1/2) - 1i)^16)/((x^(1/2) + 1)^(1/ 
2) - 1)^16 - (220*((x^(1/2) - 1)^(1/2) - 1i)^18)/((x^(1/2) + 1)^(1/2) -...